
Daniel S. Zimmerman, S.A. Triana, and D.P. Lathrop  University of Maryland Physics, Geology, IREAP 

NG43B-1492: Angular Momentum Transport in Turbulent Spherical Couette Flow
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Three Meter Experiment & Parameters
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The experiment is an approximately 2.92m diameter spherical tank  of water mounted 
on bearings with an independently rotating 1.02m diameter inner sphere.  Maximum possible 
rotation rates are 4Hz for the outer sphere and about 12Hz for the inner sphere, driven by a 
pair of 250kW electric motors with variable frequency drives.  The torques on the boundaries
provide a global measurement of angular momentum flux   Four ports in the lid allow 
measurements of pressure and wall shear stress 60cm distant from the axis and ultrasound
velocimetry is possible  10-30cm from these ports.  

Turbulent Multiple Stability

As the Rossby number Ro is varied, we observe many different turbulent flow states that are
characterized by different torque demand and mean velocity profiles, and different large scale
(m=1 and m=2 for Ro>2) coherent wave motions.  In certain ranges of Ro the flow undergoes
 spontaneous transitions between adjacent states, leading to the bimodal distributions of torque
and azimuthal velocity velocity shown  on the right.  One transition is analyzed in detail here:
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Bimodal probability distributions
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Time series of azimuthal velocity near port
 (top) and inner sphere torque (bottom) 
 Ro = 2.33 E = 5e-7.
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The torque with the outer sphere stationary depends on Reynolds number in a way 
that is typical of turbulent drag, torque nearly proportional to the square of Reynolds number. 
We use the fit to this data to normalize the torque when the outer sphere revolves as well.
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Normalizing  measured torque by the torque predicted same Reynolds number without
rotation nearly collapses the torque data for all measured parameters.  Here the torque has 
been conditioned on flow state in those ranges of Ro where the torque is bimodal.  The large
scatter at low Rossby number is likely due to shaft seal drag dominating the torque. The 
implication of the collapse presented here is that the angular momentum transport factorizes, 
with a Rossby dependent prefactor unique to the geometry and a typical turbulent scaling with
Re.  The same behavior with a different Rossby dependence has been observed in 
Taylor-Couette flow, see: Paoletti and Lathrop, Phys. Rev. Lett. , 106 024501a (2011)  and
van Gils et al., Phys. Rev. Lett. 106, 024502 (2011). 

Torque with Overall Rotation

G = f(Ro) g(Re)
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The data for the H/L state transition are consistent with the formation of an angular momentum
transport barrier near the inner sphere.  Fast fluid trapped at, above, and below the inner sphere
lowers the drag. The further transitions may be related to intensification of the transport barrier.
Dye visualization along with the torque and measurements far above the inner sphere 
corroborates faster flow at all vertical distances above the inner sphere in the L state, strongly
reduced in the H state, but global velocimetry is needed to measure angular velocity profiles. 
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We make measurements of the wall shear stress 60cm from the axis using a homemade
constant temperature anemometry system with low cost RTD sensors.  Using the wall shear 
stress in-situ calibration, we normalize the wall shear stress by that expected at the same
Reynolds number with the outer sphere stationary.   The normalized wall shear stress peaks at 
the same Ro where the normalized torque is minimized.   
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The same anti-correlation between the long term mean wall shear stress on the outer sphere 
and the torque on the inner sphere is observed in shorter term fluctuations in those quantities 
at transition Rossby numbers, two of which are shown here.  Torque (top) and wall shear stress
(bottom) are normalized by their mean values.  In all cases, the lower torque is concurrent 
with higher shear stress, implying a different pattern of wall shear stress on the 
outer sphere as Ro is varied.  At about Ro = 7, there seems to be a peak in “upward” 
transport of angular momentum but an overall reduction in transport.

Future Work - Hydromagnetic Experiments

The hydrodynamic phase of this experiment using water has finished as we work to prepare 
for experiments with liquid sodium metal.  As of this meeting the experiment is 73% full 
of sodium and we await shipment of the remaining material.  Above left are the original 
drums that we have used, in the center is a thermal image of the sphere 66% full of warm 
sodium, and on the right is a drum with heaters and insulating mantle.  We will recieve the
remaining sodium this month and hope that the three meter experiment will soon show 
self-excited dynamo action in a laboratory experiment geometrically similar to Earth’s core.
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